3.4.28 \(\int \frac {1}{(a+a \cos (c+d x))^2 \sec ^{\frac {3}{2}}(c+d x)} \, dx\) [328]

Optimal. Leaf size=149 \[ -\frac {\sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a^2 d}+\frac {2 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{3 a^2 d}+\frac {\sqrt {\sec (c+d x)} \sin (c+d x)}{a^2 d (1+\sec (c+d x))}-\frac {\sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2} \]

[Out]

-1/3*sec(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^2+sin(d*x+c)*sec(d*x+c)^(1/2)/a^2/d/(1+sec(d*x+c))-(cos(1/
2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/
2)/a^2/d+2/3*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^
(1/2)*sec(d*x+c)^(1/2)/a^2/d

________________________________________________________________________________________

Rubi [A]
time = 0.16, antiderivative size = 149, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {3317, 3902, 4104, 3872, 3856, 2719, 2720} \begin {gather*} \frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{a^2 d (\sec (c+d x)+1)}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a^2 d}-\frac {\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d (a \sec (c+d x)+a)^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/((a + a*Cos[c + d*x])^2*Sec[c + d*x]^(3/2)),x]

[Out]

-((Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a^2*d)) + (2*Sqrt[Cos[c + d*x]]*EllipticF
[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*a^2*d) + (Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(a^2*d*(1 + Sec[c + d*x]))
- (Sec[c + d*x]^(3/2)*Sin[c + d*x])/(3*d*(a + a*Sec[c + d*x])^2)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3317

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Csc[e + f*x])^(m - n*p)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3902

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-Cot[
e + f*x])*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*(2*m + 1))), x] + Dist[1/(a^2*(2*m + 1)), Int[(a + b*C
sc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*(a*(2*m + n + 1) - b*(m + n + 1)*Csc[e + f*x]), x], x] /; FreeQ[{a, b,
 d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && (IntegersQ[2*m, 2*n] || IntegerQ[m])

Rule 4104

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[d*(A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 1)/(
a*f*(2*m + 1))), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)*Simp[A
*(a*d*(n - 1)) - B*(b*d*(n - 1)) - d*(a*B*(m - n + 1) + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b,
d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && GtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {1}{(a+a \cos (c+d x))^2 \sec ^{\frac {3}{2}}(c+d x)} \, dx &=\int \frac {\sqrt {\sec (c+d x)}}{(a+a \sec (c+d x))^2} \, dx\\ &=-\frac {\sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}-\frac {\int \frac {\sqrt {\sec (c+d x)} \left (-\frac {5 a}{2}+\frac {1}{2} a \sec (c+d x)\right )}{a+a \sec (c+d x)} \, dx}{3 a^2}\\ &=\frac {\sqrt {\sec (c+d x)} \sin (c+d x)}{a^2 d (1+\sec (c+d x))}-\frac {\sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}-\frac {\int \frac {\frac {3 a^2}{2}-a^2 \sec (c+d x)}{\sqrt {\sec (c+d x)}} \, dx}{3 a^4}\\ &=\frac {\sqrt {\sec (c+d x)} \sin (c+d x)}{a^2 d (1+\sec (c+d x))}-\frac {\sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}+\frac {\int \sqrt {\sec (c+d x)} \, dx}{3 a^2}-\frac {\int \frac {1}{\sqrt {\sec (c+d x)}} \, dx}{2 a^2}\\ &=\frac {\sqrt {\sec (c+d x)} \sin (c+d x)}{a^2 d (1+\sec (c+d x))}-\frac {\sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{3 a^2}-\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{2 a^2}\\ &=-\frac {\sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a^2 d}+\frac {2 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{3 a^2 d}+\frac {\sqrt {\sec (c+d x)} \sin (c+d x)}{a^2 d (1+\sec (c+d x))}-\frac {\sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 1.46, size = 239, normalized size = 1.60 \begin {gather*} \frac {e^{-i d x} \cos \left (\frac {1}{2} (c+d x)\right ) \sqrt {\sec (c+d x)} \left (16 \cos ^3\left (\frac {1}{2} (c+d x)\right ) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )-i \sin \left (\frac {1}{2} (c+d x)\right )\right )+i \left (-7-10 \cos (c+d x)-7 \cos (2 (c+d x))+e^{-i (c+d x)} \left (1+e^{i (c+d x)}\right )^3 \sqrt {1+e^{2 i (c+d x)}} \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};-e^{2 i (c+d x)}\right )+i \sin (2 (c+d x))\right )\right ) \left (\cos \left (\frac {1}{2} (c+3 d x)\right )+i \sin \left (\frac {1}{2} (c+3 d x)\right )\right )}{6 a^2 d (1+\cos (c+d x))^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/((a + a*Cos[c + d*x])^2*Sec[c + d*x]^(3/2)),x]

[Out]

(Cos[(c + d*x)/2]*Sqrt[Sec[c + d*x]]*(16*Cos[(c + d*x)/2]^3*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*(Cos[
(c + d*x)/2] - I*Sin[(c + d*x)/2]) + I*(-7 - 10*Cos[c + d*x] - 7*Cos[2*(c + d*x)] + ((1 + E^(I*(c + d*x)))^3*S
qrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))])/E^(I*(c + d*x)) + I*Sin[2
*(c + d*x)]))*(Cos[(c + 3*d*x)/2] + I*Sin[(c + 3*d*x)/2]))/(6*a^2*d*E^(I*d*x)*(1 + Cos[c + d*x])^2)

________________________________________________________________________________________

Maple [A]
time = 0.21, size = 257, normalized size = 1.72

method result size
default \(-\frac {\sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (12 \left (\cos ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+4 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-20 \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+9 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right )}{6 a^{2} \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(257\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+a*cos(d*x+c))^2/sec(d*x+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/6*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(12*cos(1/2*d*x+1/2*c)^6+4*(sin(1/2*d*x+1/2*c)^2)
^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^3+6*(sin(1/2
*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*cos(1/2*d*x+1/2*c)^3*EllipticE(cos(1/2*d*x+1/2*c),2^(1/
2))-20*cos(1/2*d*x+1/2*c)^4+9*cos(1/2*d*x+1/2*c)^2-1)/a^2/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)
/cos(1/2*d*x+1/2*c)^3/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))^2/sec(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate(1/((a*cos(d*x + c) + a)^2*sec(d*x + c)^(3/2)), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.13, size = 277, normalized size = 1.86 \begin {gather*} -\frac {2 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{2} + 2 i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 2 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{2} - 2 i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{2} + 2 i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{2} - 2 i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {2 \, {\left (3 \, \cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{6 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))^2/sec(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

-1/6*(2*(I*sqrt(2)*cos(d*x + c)^2 + 2*I*sqrt(2)*cos(d*x + c) + I*sqrt(2))*weierstrassPInverse(-4, 0, cos(d*x +
 c) + I*sin(d*x + c)) + 2*(-I*sqrt(2)*cos(d*x + c)^2 - 2*I*sqrt(2)*cos(d*x + c) - I*sqrt(2))*weierstrassPInver
se(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 3*(I*sqrt(2)*cos(d*x + c)^2 + 2*I*sqrt(2)*cos(d*x + c) + I*sqrt(2))
*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 3*(-I*sqrt(2)*cos(d*x + c
)^2 - 2*I*sqrt(2)*cos(d*x + c) - I*sqrt(2))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I
*sin(d*x + c))) - 2*(3*cos(d*x + c)^2 + 2*cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a^2*d*cos(d*x + c)^2
 + 2*a^2*d*cos(d*x + c) + a^2*d)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {\int \frac {1}{\cos ^{2}{\left (c + d x \right )} \sec ^{\frac {3}{2}}{\left (c + d x \right )} + 2 \cos {\left (c + d x \right )} \sec ^{\frac {3}{2}}{\left (c + d x \right )} + \sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx}{a^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))**2/sec(d*x+c)**(3/2),x)

[Out]

Integral(1/(cos(c + d*x)**2*sec(c + d*x)**(3/2) + 2*cos(c + d*x)*sec(c + d*x)**(3/2) + sec(c + d*x)**(3/2)), x
)/a**2

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))^2/sec(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate(1/((a*cos(d*x + c) + a)^2*sec(d*x + c)^(3/2)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((1/cos(c + d*x))^(3/2)*(a + a*cos(c + d*x))^2),x)

[Out]

int(1/((1/cos(c + d*x))^(3/2)*(a + a*cos(c + d*x))^2), x)

________________________________________________________________________________________